- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0003000002000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Gupta, Vivek (4)
-
Srikumar, Vivek (2)
-
Abdel-Aziz, Amal Kamal (1)
-
Abdelfatah, Sara (1)
-
Abdellatif, Mahmoud (1)
-
Abdoli, Asghar (1)
-
Abel, Steffen (1)
-
Abeliovich, Hagai (1)
-
Abhyankar, Nikhil (1)
-
Abildgaard, Marie H. (1)
-
Abudu, Yakubu Princely (1)
-
Acevedo-Arozena, Abraham (1)
-
Adamopoulos, Iannis E. (1)
-
Adeli, Khosrow (1)
-
Adolph, Timon E. (1)
-
Adornetto, Annagrazia (1)
-
Aflaki, Elma (1)
-
Agam, Galila (1)
-
Agarwal, Anupam (1)
-
Aggarwal, Bharat B. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Gupta, Vivek K.; Chaudhuri, Ovijit (, Trends in Cell Biology)
-
Gupta, Vivek; Zhang, Shuo; Vempala, Alakananda; He, Yujie; Choji, Temma; Srikumar, Vivek (, Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics)
-
Li, Tao; Gupta, Vivek; Mehta, Maitrey; Srikumar, Vivek (, Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP))While neural models show remarkable accuracy on individual predictions, their internal beliefs can be inconsistent across examples.In this paper, we formalize such inconsistency as a generalization of prediction error. We propose a learning framework for constraining models using logic rules to regularize them away from inconsistency. Our framework can leverage both labeled and unlabeled examples and is directly compatible with off-the-shelf learning schemes without model redesign. We instantiate our framework on natural language inference, where experiments show that en-forcing invariants stated in logic can help make the predictions of neural models both accurate and consistentmore » « less
-
Klionsky, Daniel J.; Abdel-Aziz, Amal Kamal; Abdelfatah, Sara; Abdellatif, Mahmoud; Abdoli, Asghar; Abel, Steffen; Abeliovich, Hagai; Abildgaard, Marie H.; Abudu, Yakubu Princely; Acevedo-Arozena, Abraham; et al (, Autophagy)
An official website of the United States government
